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Abstract

It is shown that a function u satisfying |∂t +�u| � M (|u| + |∇u|), |u(x, t)| �
MeM|x|2 in (Rn \ BR) × [0, T ] and u(x, 0) = 0 for x ∈ R

n \ BR must vanish
identically in R

n \ BR × [0, T ].

1. Introduction

In this paper we prove backward uniqueness for solutions of

|∂tu+�u| � M (|u| + |∇u|) (1.1)

in QR,T = R
n \ BR × [0, T ], where BR = {x ∈ R

n : |x| � R}. Our main result,
Theorem 1 below, says that under natural regularity assumptions on u, any solution
of (1.1) with controlled growth at infinity which vanishes at t = 0 must vanish
identically. The required growth condition is

|u(x, t)| � MeM|x|2 . (1.2)

The main point of the theorem is that the values of u at the parabolic boundary of
QR,T are not controlled by the assumptions. WhenQR,T is replaced by R

n×[0, T ]
the statement of Theorem 1 follows, for example from [2] and [17]. Papers [14,
18, 20] also contain important related results. We remark that classical examples of
A. N. Tikhonov show that Theorem 1 fails, even in R

n × [0, T ], when the growth
condition (1.2) is slightly weakened.

One interesting consequence of Theorem 1 is that it settles a well-known prob-
lem in the regularity theory of the Navier-Stokes equations. This is explained in
[19], where Theorem 1 was conjectured and proved for bounded u in the simple



148 L. Escauriaza, G. Seregin & V. Šverák

case when (1.1) is satisfied with M = 0. To formulate the result implied by Theo-
rem 1 and [19], let us consider the classical Cauchy problem for the incompressible
Navier-Stokes equations in R

3 × (0, T ),

vt + v · ∇v + ∇p = �v in R
3 × (0, T ),

div v = 0 in R
3 × (0, T ),

v(x, 0) = v0(x) in R
3. (1.3)

We assume that v0 is a smooth divergence-free vector field with suitable decay
at ∞. It is known that the problem (1.3) has at least one Leray-Hopf weak solution.
(See, for example, [12, 7].) As proved in [19], Theorem 1 implies the following
result.

Theorem. In the notation introduced above, assume that a Leray-Hopf weak solu-
tion v of (1.3) is bounded in the space L∞(0, T ;L3(R3)). Then v is smooth in
R

3 × [0, T ).
In fact, it can easily be seen from this and the local well-posedness of (1.3) in

L3 (see [11]) that the following slightly stronger statement is true: If v0 is as above
and a Leray-Hopf solution v of (1.3) is bounded in L∞(0, t1;L3(R3)) for some
t1 � T , then v is smooth in R

3 × [0, t1].
Theorem 1 is also of interest in control theory. Micu & Zuazua have shown

in [16] the lack of null controllability of the heat equation on the half space for any
positive time with L2 control on the lateral boundary and for a large class of initial
data. Theorem 1 shows that the same holds for operators ∂t +�+b · ∇ + c when b
and c are bounded functions, and for domains containing the complement of a ball
in R

n. In fact, b and c can be considered as additional controls and the theorem says
that under the growth assumption (1.2) null controllability by bounded controls for
ut+�u+b ·∇u+cu = 0 is not possible, except for the trivial case when u vanishes
identically. For exact controllability of the heat equation for bounded domains we
refer the reader to [10, 15], for example.

The proof of Theorem 1 uses the following Carleman inequalities:

1. Set σ(t) = te−t/3 and σa(t) = σ(t + a). Then, there is a constant N = N(n)

such that the inequalities

‖σ−α−1/2
a e−|x−y|2/8(t+a)u‖L2(Rn×(0,1))

+ ‖σ−α
a e−|x−y|2/8(t+a)∇u‖L2(Rn×(0,1))

� N‖σ−α
a e−|x−y|2/8(t+a) (�u+ ∂tu) ‖L2(Rn×(0,1)) (1.4)

hold for all α � 0, y ∈ R
n, 0 < a < 1 and u ∈ C∞

0 (R
n × [0, 1)) verifying

u(., 0) ≡ 0.
2. There is a constant α0 = α(R, n) such that the inequalities

‖eα(T−t)(|x|−R)+|x|2u‖L2(QR,T )
+ ‖eα(T−t)(|x|−R)+|x|2∇u‖L2(QR,T )

� ‖eα(T−t)(|x|−R)+|x|2 (�u+ ∂tu) ‖L2(QR,T )

+ ‖e|x|2∇u(., T )‖L2(Rn\BR) (1.5)

hold for all α � α0 and u ∈ C∞
0 (QR,T ) satisfying u(., 0) ≡ 0.
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The first Carleman inequality, based on ideas developed in [3–6], is used to
prove that under the assumptions of Theorem 1 we have

|u(x, t)| + |∇u(x, t)| � Ne−|x|2/(Nt)

for some N > 0 in Q6R,T .This estimate enables us to apply the second Carleman
inequality to the (slightly modified) functionu, and obtain the result (for sufficiently
small T ) by letting α → ∞.Inequality (1.5) seems to be new.

As is usual in the context ofL2 Carleman estimates, we use suitable integration
by parts to prove our main inequalities. The calculations can be organized either by
using identities developed in [6], or by following more or less standard calculations
with new dependent variables and commutators in the spirit of [8, 9] or [21]. In
this paper we will use the former method, which is based on Lemma 1 below. An
alternative proof of Theorem 1, which uses the latter method and a slightly modified
version of (1.4) and (1.5) will appear elsewhere.

2. Proof of the main result

In what follows we assume that the functions entering the expressions below are
“sufficiently regular" so that the quantities we consider are suitably well defined.
For example, the assumption that the derivatives entering our formulae are distri-
butional derivatives and are square integrable over bounded sets is sufficient.

Theorem 1. Assume that u : QR,T −→ R verifies in QR,T the inequalities

|�u+ ∂tu| � M (|u| + |∇u|) and |u(x, t)| � MeM|x|2

for some positive constantsM , T andR. Then, if u(x, 0) ≡ 0 in R
n\BR , u vanishes

identically in QR,T .

Though the proof of this result is given for real-valued functions, the argu-
ments also work when u is replaced by a vector-valued function ω : QR,T −→ R

n

verifying the same conditions and the inequality

|�ω + ∂tω| � M (|ω| + |∇ω|). (2.1)

This is because (2.1) is a triangular parabolic system with ∂t +� as the principal
part and the solutions ω to (2.1) verify the L∞ bounds [13] for real-valued subso-
lutions to parabolic equations: if ω ∈ W 2,1

2,loc(QR,T ) is a solution of (2.1), there is
a constant N depending on M such that

√
s|∇ω(y, s)| + |ω(y, s)| � N

s
n
2 +1

∫ 2s

s

∫
B√

s (y)

|ω| dX

when |y| > 2
√
s + R and 0 < s � T/2.

To prove the result we need four lemmas. The Lemmas 1 through 3 are used
to build the Carleman inequalities. In Lemma 4 it is shown that u vanishes in
R
n \BR×[0,M] whenM is small,R � 1 and T = 1, and the general case follows

using suitable parabolic rescalings and time translations.
Below dX = dxdt and I denotes the identity matrix.
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Lemma 1. Assume that u andG are smooth functions on an open set in R
n+1 and

that G is positive. Then, the following identity holds when F = (∂tG−�G)/G:

∇ · [2∂tuG∇u+ |∇u|2∇G− 2 (∇G · ∇u)∇u+ uFG∇u
+ 1

2u
2F∇G− 1

2u
2G∇F ] − ∂t

[
|∇u|2G+ 1

2u
2FG

]

= 2
(
∂tu− ∇ logG · ∇u+ 1

2Fu
)
(�u+ ∂tu)G− 2(∂tu− ∇ logG · ∇u

+ 1
2Fu)

2G− 1
2u

2 (∂tF +�F)G− 2D2(logG)∇u · ∇u G.
Proof. The formula follows formally upon expanding the left-hand side with the
product rule, multiplying out the products and squares on the right-hand side and
comparing both outcomes.

The main ideas behind the previous argument come from the following obser-
vations. First,

2
(
∂tu− ∇ logG · ∇u+ 1

2Fu
)
(�u+ ∂tu)G

−2
(
∂tu− ∇ logG · ∇u+ 1

2Fu
)2
G

= 2
(
∂tu− ∇ logG · ∇u+ 1

2Fu
) (
�u+ ∇ logG · ∇u− 1

2Fu
)
G,

and the operators

A = ∂t − ∇ logG · ∇ + 1
2F and S = �+ ∇ logG · ∇ − 1

2F

are respectively antisymmetric and symmetric in L2(GdX).We can now use the
Rellich-Nečas identity with vector field ∇G,

2∇G ·∇u�u = �G|∇u|2 −2D2G∇u ·∇u−∇ ·
(
|∇u|2∇G− 2 (∇G · ∇u)∇u

)
,

to compute the quadratic form associated with the commutator of these two oper-
ators in L2(GdX).

Now, integrating the formula in Lemma 1 over R
n×[0, T ] we get the following

identity.

Lemma 2. Assume that G is a smooth positive function in QR,T , u ∈ C∞
0 (QR,T )

and set F = (∂tG−�G) /G. Then, the following identity holds:

2
∫ (

∂tu− ∇ logG · ∇u+ 1
2Fu

)2
GdX + 2

∫
D2(logG)∇u · ∇u GdX

+ 1
2

∫
u2 (∂tF +�F)GdX

= 2
∫
(�u+ ∂tu)

(
∂tu− ∇ logG · ∇u+ 1

2Fu
)
GdX

+
∫

|∇u|2G dx

∣∣∣∣
t=T

t=0
+ 1

2

∫
u2FG dx

∣∣∣∣
t=T

t=0
.
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Thus, in general we can expect to control the L2(G dX) norm of u and ∇u by
the L2(G dX) norm of �u+ ∂tu, where logG is convex and ∂tF +�F > 0.

In particular, when G = e2α(T−t)(|x|−R)+2|x|2 the following inequalities hold
on QR,T for α > 0 sufficiently large depending on n and R:

D2(logG) � I, F � 0 and ∂tF +�F � 1. (2.2)

Then, the second Carleman inequality (1.5) follows from Lemma 2, (2.2) and from
the Cauchy-Schwarz inequality (which is used to handle the first integral on the
right-hand side of the formula in Lemma 2).

The Carleman inequality (1.4) involves the functionG = e−|x|2/4t . In this case,
D2(logG) = − 1

2t I and logG is concave, but multiplying the identity in Lemma
1 by a suitable function depending on time, we can make the “commutator”of the
two operators given below a positive operator. In particular, following the formula
(2.3) below,

σ 1−α

σ̇

(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)
(�u+ ∂tu)G

− σ 1−α

σ̇

(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)2

G

= σ 1−α

σ̇

(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

) (
�u+ ∇ logG · ∇u+ ασ̇

2σ
u

)
G,

and the operators

A = ∂t − ∇ logG · ∇ − ασ̇

2σ
and S = �+ ∇ logG · ∇ + ασ̇

2σ

are respectively antisymmetric and symmetric in L2(σ−αGdX). Then, the qua-
dratic form associated with the “commutator”with respect with the measure σ 1−α

σ̇
G dX is calculated using the divergence theorem.

Finally, the parameter a ∈ (0, 1) in the Carleman inequality (1.4) is there to
make rigorous the integration by parts done in its proof when u ∈ C∞

0 (R
n×[0, 1))

and u(x, 0) ≡ 0 on R
n. Setting there a = 0 would only allow us to enter in

(1.4) functions u ∈ C∞
0 (R

n × (0, 1)) or vanishing to infinite order at (y, 0) in the
(x, t)-variable.

Lemma 3. Let α > 0, G denote a positive caloric function in R
n × [0, 1] and

σ = σ(t) a positive non-decreasing function on [0, 1). Then, the following identity
holds for all u ∈ C∞

0 (R
n × [0, 1)) verifying u(x, 0) = 0 on R

n:

2
∫
σ 1−α

σ̇

(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)2

GdX +
∫
σ 1−α

σ̇
DG∇u · ∇u GdX

= 2
∫
σ 1−α

σ̇
(�u+ ∂tu)

(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)
GdX,

where DG =
.

l̂og σ
σ̇

I + 2D2(logG).
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Proof. Replacing in Lemma 1 the function G by σ−αG, we have F = −α ˙̂
log σ

and the identity

σ−α∇ ·
[

2∂tuG∇u+ |∇u|2∇G− 2 (∇G · ∇u)∇u− ασ̇

σ
uG∇u− ασ̇

2σ
u2∇G

]

= 2σ−α
(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)
(�u+ ∂tu)G

− 2σ−α
(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)2

G+ α

2
σ−α ¨̂

log σu2G

− 2σ−αD2(logG)∇u · ∇uG+ ∂t

[
σ−α|∇u|2G− ασ̇

2σ
σ−αu2G

]
. (2.3)

Multiplying (2.3) by σ
σ̇

and using the identities

(σ
σ̇

) ¨̂
log σ = −

˙̂
log

σ

σ̇
,
σ

σ̇
∂t

[
σ−α|∇u|2G− ασ̇

2σ
σ−αu2G

]

= ∂t

[
σ 1−α

σ̇
|∇u|2G− ασ−α

2
u2G

]
− σ 1−α

σ̇

˙̂
log

σ

σ̇
|∇u|2G

+ ασ−α

2

˙̂
log

σ

σ̇
u2G,

it follows that

σ 1−α

σ̇
∇ ·

[
2∂tuG∇u+ |∇u|2∇G− 2 (∇G · ∇u)∇u− ασ̇

σ
uG∇u− ασ̇

2σ
u2∇G

]

= 2σ 1−α

σ̇

(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)
(�u+ ∂tu)G

− 2σ 1−α

σ̇

(
∂tu− ∇ logG · ∇u− ασ̇

2σ
u

)2

G− σ 1−α

σ̇
DG∇u · ∇u G

+ ∂t
[
σ 1−α

σ̇
|∇u|2G− ασ−α

2
u2G

]
, (2.4)

and the identity in Lemma 2 follows upon integrating (2.4) over R
n × [0, 1].

When a ∈ (0, 1) and taking respectively in Lemma 3 as G and σ the functions
Ga = (t + a)−n/2e−|x|2/4(t+a) and σa = (t + a)e−(t+a)/3 , we have

1

3e
(t + a) � σa(t) � t + a,

1

3e
� σ̇a(t) � 1 and DGa � 1

3I (2.5)

when t ∈ (0, 1) and (x, t) ∈ R
n × (0, 1). With these choices, the integrations by

parts done in the derivation of Lemma 3 are valid when u ∈ C∞
0 (R

n × [0, 1)) and
u(x, 0) ≡ 0 on R

n, and from Lemma 3, (2.5) and the Cauchy-Schwarz inequality,
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‖σ−α
a G

1/2
a ∇u‖L2(Rn×(0,1)) � ‖σ−α

a G
1/2
a (�u+ ∂tu) ‖L2(Rn×(0,1)). (2.6)

Multiplying the identity

(�+ ∂t )(u
2) = 2u(�u+ ∂tu)+ 2|∇u|2

by σ−2α
a Ga , then integrating by parts the operator�+∂t acting on u2 over the other

terms in the corresponding integral over R
n × (0, 1), and using the Cauchy-Sch-

warz inequality to handle the cross term, (2.5) and (2.6), we find that the following
inequality holds when α > 0:

√
α‖σ−α−1/2

a G
1/2
a u‖L2(Rn×(0,1)) + ‖σ−α

a G
1/2
a ∇u‖L2(Rn×(0,1))

� ‖σ−α
a G

1/2
a (�u+ ∂tu) ‖L2(Rn×(0,1)).

This proves the Carleman inequality (1.4) upon replacing α by α− n
4 and observing

that the previous inequality is invariant under translations of the space variable.

Lemma 4. Assume that u satisfies in R
n \ BR × [0, 1]

|�u+ ∂tu| � ε (|u| + |∇u|) , |u(x, t)| � eε|x|2 , (2.7)

and u(x, 0) ≡ 0 in R
n \ BR for some R � 1. Then, there is ε(n) > 0 such that u

is identically zero in R
n \ BR × [0, ε] when ε � ε(n).

Proof. In order to obtain this result we first show that there exists ε(n) > 0 and a
constant N = N(n) such that any such function verifies, in R

n \ B6R × [0, 1
N

],

|u(y, s)| + |∇u(y, s)| � Ne−|y|2/(Ns) (1 + ‖u‖L∞(B4R\BR×[0,1])
)

(2.8)

when ε � ε(n).
Assuming that u verifies (2.7), |y| � 6R, a ∈ (0, 1) and that r � 4|y| is

a large number, we will apply the first Carleman inequality (1.4) to ur(x, t) =
u(x, t)ϕ(t)ψr(x), where ϕ ∈ C∞(R) andψr ∈ C∞

0 (R
n) satisfy ϕ = 1 for t � 1/2,

ϕ = 0 for t � 3/4, ψr = 1 for 3R � |x| � 2r , ψr = 0 for |x| � 2R and |x| � 3r ,
0 � ϕ,ψ � 1, and taking α = k, k ∈ N, in (1.4) . With these definitions we have

‖σ−k−1/2
a e−|x−y|2/8(t+a)ur‖2 + ‖σ−k

a e−|x−y|2/8(t+a)∇ur‖2

� ‖σ−k
a e−|x−y|2/8(t+a) (�+ ∂t ) (ur)‖2. (2.9)

On the other hand,

| (�+ ∂t ) (ur)| � ε (|ur | + |∇ur |)+ |ϕ′u|
+ϕ [|u| (|�ψr | + |∇ψr |)+ 2|∇ψr ||∇u|] , (2.10)
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and from (2.9) it is possible to hide the first term on the right-hand side of (2.10)
in the left-hand side of (2.9) when ε is sufficiently small, and obtain, for k � 0,

‖σ−k−1/2
a e−|x−y|2/8(t+a)ur‖2 + ‖ σ−k

a e−|x−y|2/8(t+a)∇ur‖2

� ‖ σ−k
a e−|x−y|2/8(t+a)u‖L2(Rn\BR×[ 1

2 ,
3
4 ])

+ ‖ σ−k
a e−|x−y|2/8(t+a) (|u| + |∇u|) ‖L2(B3R\B2R×[0, 3

4 ])
+ ‖ σ−k

a e−|x−y|2/8(t+a) (|u| + |∇u|) ‖L2(B3r\B2r×[0, 3
4 ]). (2.11)

The standard L∞ bounds for the gradient of subsolutions to parabolic equations
[13] imply that there is a constant depending on n and k such that

‖ σ−k
a e−|x−y|2/8(t+a) (|u| + |∇u|) ‖L2(B3r\B2r×[0, 3

4 ])
� a−ke−r2‖u‖L∞((B4r\Br)×[0,1]),

and from the growth condition (2.7), the right-hand side of this inequality tends to
zero as r → +∞ when ε < 1/16. Then, letting first r → +∞ and then a → 0 in
(2.11), it follows from (2.5) that there is a universal constant N = N(n) such that,
for k � 0,

‖t−k−1/2e−|x−y|2/8t u‖L2(Rn\B2R×[0, 1
2 ]) + ‖t−ke−|x−y|2/8t∇u‖L2(Rn\B2R×[0, 1

2 ])
� Nk‖e−|x−y|2/8t u‖L2(Rn\BR×[ 1

2 ,
3
4 ])

+Nk‖t−ke−|x−y|2/8t (|u| + |∇u|) ‖L2(B3R\B2R×[0, 3
4 ]). (2.12)

From (2.7),

‖e−|x−y|2/8t u‖L2(Rn\BR×[ 1
2 ,

3
4 ]) � ‖eε|x|2−

|x−y|2
6 ‖L2(Rn) � e|y|2 . (2.13)

On the other hand, e−|x−y|2/8t � e−|y|2/16t when x ∈ B3R \B2R and from Stirling’s
formula [1]

max
t>0

t−ke−|y|2/16t = |y|−2k(16k)ke−k � |y|−2kNkk!,

and from this fact and the standard L∞ bounds for the gradient of subsolutions to
parabolic inequalities [13] we have

‖t−ke−|x−y|2/8t (|u| + |∇u|) ‖L2(B3R\B2R×[0, 3
4 ])

� Nkk!|y|−2k‖u‖L∞(B4R\BR×[0,1]). (2.14)

Then, (2.12)–(2.14) and (2.7) imply that there is a constant N = N(n) such that,
for |y| � 6R and k � 0,

‖t−ke−|x−y|2/8t u‖L2((Rn\B2R×[0, 1
2 ]) � Nk(k!|y|−2k‖u‖L∞(B4R\BR×[0,1]) + e|y|2),
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and multiplying this inequality by |y|2k/ (
(2N)kk!) and adding up in k � 0,

‖e|y|2/(4Nt)e−|x−y|2/8(t+a)u‖
L2((Rn\B2R×[0, 1

8N ]) � 1 + ‖u‖L∞(B4R\BR×[0,1]).

(2.15)

Then, from standard estimates for subsolutions of parabolic inequalities [13],

|u(y, s)| + √
s|∇u(y, s)| � 1

s
n
2 +1

∫ 2s

s

∫
B√

s (y)

|u| dX, (2.16)

and the claim (2.8) follows from (2.15) and (2.16).
Now, we apply the second Carleman inequality (1.5) to ua,r = uψa,r , where

0 < a < 1, r > 0 is a large number, ψa,r ∈ C∞
0 (R

n) verifies ψa,r = 0 for
|x| � (1 + a)R or |x| � 2r and ψa,r = 1 for (1 + 2a)R � |x| � r , and choosing
T = 4ε, where 0 < ε � 1/(10N) and N is the constant in (2.8). In particular, we
have

‖eα(4ε−t)(|x|−R)+|x|2ua,r‖L2(QR,4ε)
+ ‖eα(4ε−t)(|x|−R)+|x|2∇ua,r‖L2(QR,4ε)

� ‖eα(4ε−t)(|x|−R)+|x|2 (�+ ∂t ) (ua,r )‖L2(QR,4ε)

+ ‖e|x|2∇ua,r (., 4ε)‖L2(Rn). (2.17)

As before,

| (�+ ∂t ) (ua,r )| � ε
(|ua,r | + |∇ua,r |

)
+ |u| (|�ψa,r | + |∇ψa,r |

) + 2|∇ψa,r ||∇u|, (2.18)

and the first term on the right-hand side of (2.18) can be hidden in the left-hand side
of (2.17) when ε is sufficiently small. These imply that the following inequality
holds with a constant depending on a > 0:

e10αεaR‖u‖L2(Br\B(1+10a)R×[0,ε]) � e8αεr+4r2‖|u| + |∇u|‖L2(B2r\Br×[0,4ε])
+ e8αεaR‖|u| + |∇u|‖L2(B(1+2a)R\B(1+a)R×[0,4ε])
+ ‖e|x|2u(., 4ε)‖L2(B2r\B(1+a)R)

+ ‖e|x|2∇u(., 4ε)|‖L2(B2r\B(1+a)R).

This inequality and (2.8) imply that for some constant depending on a and ε,

‖u‖L2(Br\B(1+10a)R×[0,ε]) � eαr−r2 + e−2αεaR.

Then, letting first r → +∞, then α → +∞ and finally a → 0+ in the last
inequality, gives u ≡ 0 in R

n \ BR × [0, ε].



156 L. Escauriaza, G. Seregin & V. Šverák

In general, when u satisfies the assumptions in Theorem 1, there is δ > 0 such
that the function u(δx, δ2t)/M , also denoted u, verifies (2.7) in R

n\BR×[0, T ] for
some newR � 1 and T � 1 and with ε as small as we like. If T � 1, Lemma 4 gives
u ≡ 0 in R

n \BR ×[0, ε]. Then, u(x, t + ε) satisfies (2.7) in R
n \BR ×[0, T − ε],

and if T − ε � 1 we get u ≡ 0 in R
n \ BR × [0, 2ε]. Proceeding in this way, we

find a � 0 such that u ≡ 0 in R
n \BR ×[0, a] and 0 < T − a � 1. Setting a0 = a

and uk(x, t) = u(
√
T − ak x, (T − ak)t + ak) when k � 0, uk verifies (2.7), and

Lemma 4 implies that u ≡ 0 in R
n \BR×[0, ak+1], where ak+1 = (1−ε)ak+T ε.

The sequence {ak} is non-decreasing and 0 < ak < T for all k � 0. These two
facts imply that limk→+∞ ak = T , and prove the theorem.
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